
Analysis of Seepage from Polygon Channels
Bhagu R. Chahar1

Abstract: An exact analytical solution for the quantity of seepage from a trapezoidal channel underlain by a drainage layer at a shallow
depth has been obtained using an inverse hodograph and a Schwarz-Christoffel transformation. The symmetry about the vertical axis has
been utilized in obtaining the solution for half of the seepage domain only. The solution also includes relations for variation in seepage
velocity along the channel perimeter and a set of parametric equations for the location of phreatic line. From this generalized case,
particular solutions have also been deduced for rectangular and triangular channels with a drainage layer at finite depth and trapezoidal,
rectangular, and triangular channels with a drainage layer and water table at infinite depth. Moreover, the analysis includes solutions for
a slit, which is also a special case of polygon channels, for both cases of the drainage layer. These solutions are useful in quantifying
seepage loss and/or artificial recharge of groundwater through polygon channels.
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Introduction

Study of seepage from polygon �straight line boundary� channels
is important due to its applications in areas of irrigation engineer-
ing, groundwater hydrology, and reservoir management. The loss
of water due to seepage from irrigation canals constitutes a sub-
stantial part of the usable water �Rohwer and Stout 1948; Worstell
1976�. The seepage loss results not only in depleted fresh water
resources but also causes water logging, salinization, groundwater
contamination, and health hazards. Canal lining is adopted to
check seepage but cracks develop in the lining for various reasons
and seepage from a canal with cracked lining is likely to approach
the quantity of seepage from an unlined canal �Wachyan and
Rushton 1987�. Therefore, optimization of geometrical elements
of polygon channels to minimize seepage loss is gaining impor-
tance �Kacimov 1992; Swamee et al. 2002a,b�. On the other hand,
an increased seepage in the form of artificial recharge of ground-
water is practiced to mitigate the problems of groundwater deple-
tion and its deleterious consequences. The seepage and recharge
from a channel is governed by the same principle of flow through
a porous medium and controlled by hydraulic conductivity of the
subsoils, channel geometry, hydraulic gradient between the
channel and the aquifer underneath, and the initial and bound-
ary conditions �International Commission on Irrigation and
Drainage 1967�.

Vedernikov �Harr 1962� gave an exact mathematical solution
to unconfined, steady-state seepage from a triangular and a trap-
ezoidal channel in a homogeneous, isotropic, porous medium of
large depth using inversion of hodograph and conformal mapping
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techniques. The solution of a rectangular channel was given by
Morel-Seytoux �1964� using conformal mapping and Green-
Neumann functions. Chahar �2001� analyzed seepage from slit
and strip channels as special cases of a polygon channel and also
presented results for trapezoidal, triangular, and rectangular chan-
nels in graphical form. Muskat �1982� suggested an approximate
solution using Zhukovsky functions and conformal mapping tech-
niques for a trapezoidal channel in a porous medium of finite
depth underlain by a drainage layer. Chahar �2000� and Swamee
et al. �2001� obtained an analytical solution for seepage from a
rectangular channel in a soil layer of finite depth overlying a
drainage layer using inversion of hodograph and conformal map-
ping techniques. Bruch and Street �1967a,b� used the same
method in computing seepage from a triangular channel underlain
by a drainage layer at shallow depth. Seepage from polygon chan-
nels has also been estimated by several investigators for different
boundary conditions using analytical methods �El Nimr 1963;
Garg and Chawla 1970; Sharma and Chawla 1974, 1979�, elec-
trical analogue methods �Bouwer 1965� and numerical methods
�Jeppson 1968; Remson et al. 1971; Pinder and Gray 1977;
Liggett and Liu 1983�. Approximate solutions by numerical meth-
ods have gained importance due to easy availability of high speed
digital computers along with specialized software. However, gen-
eralized solutions in the functional form are not possible through
numerical methods; instead they result only in a numerical value
as a problem specific particular solution.

This review reveals that exact analytical solutions for comput-
ing seepage from a trapezoidal channel in porous medium of fi-
nite depth underlain by a drainage layer are not available using
hodographs. Further, available analytical solutions for triangular,
rectangular, and trapezoidal channels were obtained by different
investigators using different methods or different point of open-
ings in the mapping planes, so these solutions differ from expres-
sions obtained as limiting or particular cases of the solution for
the most general problem. In the present study, an exact analytical
solution for the quantity of seepage from a trapezoidal channel
underlain by a drainage layer at a shallow depth has been
obtained using an inverse hodograph and Schwarz-Christoffel

transformations for one half of the seepage domain. Moreover its
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particular cases corresponding to a drainage layer at finite and
infinite depths have been dealt with.

Analytical Solution

Consider a trapezoidal channel of bed width b �m�, depth of water
y �m�, and side slope m �1 Vertical: m Horizontal� passing through
a homogeneous isotropic porous medium of hydraulic conductiv-
ity k �m/s� underlain by a horizontal drainage layer at a depth d
�m� below the water surface as shown in Fig. 1�a�. The steady
seepage discharge per unit length of channel qs �m2/s� complying
with Darcy’s law can be expressed in the following simplest form
�Chahar 2000; Swamee et al. 2000�

qs = kyFs �1�

where Fs �dimensionless seepage function��function of channel
geometry and boundary conditions.

The pattern of seepage from the channel is shown in Fig. 1�a�.
The effects of capillarity, infiltration, and evaporation are ignored.
In view of the significant length of the channel, the seepage flow
can be considered two dimensional in the vertical plane. It is
assumed that the water table is below the top of the drainage layer
and hence atmospheric pressure prevails at the bottom of the
seepage layer. The seepage domain has symmetry about vertical
axis Y so half of the domain �a�b�c�g�h�a�� has been used in the
analysis. Defining complex potential W=�+ i� �Fig. 1�d�� where
��velocity potential �m2/s� which is equal to k times the head h
�m� and ��stream function �m2/s� which is constant along
streamlines. If the physical plane is defined as Z=X+ iY then Dar-

Fig. 1. Seepage from a trapezoidal channel underlain by a drainage
layer
cy’s law yields u=�� /�X=−k�h /�X and v=�� /�Y =−k�h /�Y;
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where u and v�velocity or specific discharge vectors �m/s� in X
and Y directions, respectively. The hodograph dW /dZ=u− iv
�Fig. 1�b�� and the inverse hodograph dZ /dW �Fig. 1�c�� for half
of the seepage flow domain �a�b�c�g�h�a�� have been drawn fol-
lowing the standard steps �see Harr 1962; Polubarinova-Kochina
1962; or Strack 1989�. The dZ /dW plane and W plane have been
mapped on the lower half ���0� of an auxiliary ��� plane �Fig.
1�e�� using the Schwarz-Christoffel conformal transformation.

Mapping of the inverse hodograph plane on the auxiliary plane
�see Appendix I� is

dZ

dW
=

− iei��

kB�1/2,���1

� dt

�t − 1�1−��t
�2�

where ��=cot−1 m; t�dummy variable; and
B�1/2 ,���complete beta function. The W plane mapping on the
auxiliary plane is

W = i
kd��

2K���� − 	�/��
�

�

� dt
�t�t − 	��t − ��

�3�

where � and 	�transformation variables; and
K����−	� /���complete elliptical integral of the first kind with a
modulus ����−	� /�� �Byrd and Friedman 1971�. Using Eq. �2�
and the derivative of Eq. �3� and then integrating �see Appendix I�
result in the mapping of physical plane on the auxiliary plane as

Z =
B

2
− id +

ei��

B�1/2,��
d��

2K���� − 	�/��


�
0

� ��
1

t d�

�� − 1�1−���
� dt

�t�t − ���t − 	�
�4�

where B�width of saturated porous medium at the level of drain-
age layer �m�; and ��another dummy variable. Eq. �4� defines the
physical domain of the seepage flow a�b�c�g�h�a� �Fig. 1�a��. For
example, at g���=	 ;Z=−id�

B =
d��

K���� − 	�/��B�1/2,��
�

0

	 F1�t,��dt

�t�� − t��	 − t�
�5�

where F1�t ,�� is defined by Eq. �44�. At the center of the channel
c� ��=� ;Z=−iy� Eq. �4� reduces to

y =
d��

2K���� − 	�/��B�1/2,��
�

	

� Bt�1/2,��dt

�t�� − t��t − 	�
�6�

and at the corner of channel b� ��=1;Z=b /2− iy� it yields

b =
d��

K���� − 	�/��B�1/2,��
�

�

1 F1�t,��dt

�t�t − ���t − 	�
�7�

where Bt�1/2 ,���incomplete beta function �Abramowitz and
Stegun 1972� given by Eq. �45�.

The phreatic line a�h��−� �0� can be located by manipu-
lating Eq. �4� and then separating the real and imaginary parts

X = �B

2
− d���

0

�
F3�t,��dt

��− t��� − t��	 − t�� 2K���� − 	�/��B�1/2,���

�8a�



Y =
d

K���� − 	�/��
�K���� − 	�/�� − F�sin−1���/�� − 	��,��� − 	�/���

�8b�

where F3�t ,�� is defined by Eq. �54�;
F�sin−1��� / ��−	�� ,���−	� /���incomplete elliptical integral of
the first kind with modulus ���−	� /�, and amplitude
sin−1�� / ��−	� �Byrd and Friedman 1971�.

Computation of Seepage Quantity

Using the values at the point h���=0;W=kd+ iqs /2� in Eq. �3�

kd +
qs

2
i =

ikd��

2K���� − 	�/��
�

�

0 dt
�t�t − 	��t − ��

�9�

which leads to

qs = 2kdK��	/��/K���� − 	�/�� �10�

Equating Eq. �1� with Eq. �10� gives

Fs = 2
d

y
K��	/��/K���� − 	�/�� �11�

This involves two transformation parameters � and 	. Using Eqs.
�6� and �7�

d

y
= 2K���� − 	�/��B�1/2,������

	

� Bt�1/2,��dt

�t�� − t��t − 	�

�12a�

b

y
= 2�

�

1 F1�t,��dt

�t�t − ���t − 	���
	

� Bt�1/2,��dt

�t�� − t��t − 	�
�12b�

Substituting d /y from Eqs. �12a� in Eq. �11�

Fs = 4K��	/��B�1/2,������
	

� Bt�1/2,��dt

�t�� − t��t − 	�
�13�

Simultaneous solution of Eqs. �12a� and �12b� for the given chan-
nel dimensions �b ,y, and �� and depth of the drainage layer �d�
results in parameters � and 	. Using these values in Eq. �13�, the
seepage function and then the quantity of seepage can be deter-
mined. Further, these values can be used in Eq. �5� to find the
width of seepage domain at the drainage layer. Finally the
phreatic line can be plotted using � and 	 in Eqs. �8a� and �8b�.
However these equations involve complicated integrals with im-
plicit transformation variables. These integrals �complete and
incomplete beta functions, complete and incomplete elliptical in-
tegrals, and remaining improper integrals� can be evaluated using
numerical integration �Press et al. 1992� after converting the im-
proper integrals into proper integrals �Chahar 2005�.

As the depth of the drainage layer becomes very large the
transformation variable 	 approaches a value equal to zero and
the seepage function changes to �refer to Appendix I�

Fs =
2�B�1/2,��
�� sin �� ��

1

� F2�t,��dt

t�t − �

=
2�B�1/2,��

�� ��
0

� Bt�t,��dt

t�� − t
�14�
where the transformation variable � for this case is given by
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b

y
= 2�

�

1 F1�t,��dt

t�t − � ��
0

� Bt�t,��dt

t�� − t
�15�

Variation in Seepage Velocity

From Eq. �2�

dZ

dW
=

1

u − iv
=

u + iv
u2 + v2 =

− iei��

kB�1/2,���1

� dt

�t − 1�1−��t
�16�

Equating the real and imaginary parts and then squaring and add-
ing them along the bed of the channel c�b������1� results

V

k
= B�1/2,����

�

1 dt

�1 − t�1−��t
�17�

where V=�u2+v2 is the resultant velocity of seeping water. The
denominator is zero when �=1; hence at the corner of the channel

V

k
= � �18�

The minimum seepage velocity along the bed of the channel oc-
curs at the center c���=�� and is equal to

V

k
= B�1/2,����

�

1 dt

�1 − t�1−��t
�19�

The relationship for the seepage velocity along the side slope of
the channel b�a��1��� � � is

V

k
= B�1/2,����

1

� dt

�t − 1�1−��t
�20�

The minimum seepage velocity along the side slope of the chan-
nel at the water surface a���= � � is

V

k
= B�1/2,����

1

� dt

�t − 1�1−��t

= B�1/2,��/B�1/2 − �,��

= cos �� �21�

This shows that the seepage velocity at the water surface is zero
for a rectangular channel shape �i.e., �=0.5� and is equal to the
hydraulic conductivity of the porous medium for a strip channel
�i.e., �=0� for which ponded water depth is small and water seeps
vertical downwards with unit hydraulic gradient in saturated po-
rous medium �Chahar 2001�.

The expressions for the variation in the seepage velocity when
the drainage layer is at infinite depth are identical to the case with
the drainage layer at a shallow depth because the inverse
hodograph mapping is identical in both cases except for the loca-
tion of g�, which does not take part in Schwarz-Christoffel trans-
formation due to vertex angle being equal to � in the drainage
layer for the shallow depth case.

Rectangular Channel

A rectangular section is a special case of a trapezoidal section
with vertical side slopes. See Appendix I for details. Eq. �8a� for

the X-coordinate of the phreatic line changes to
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X =
d��

�K���� − 	�/����0

	
�/2 − tan−1�t/�1 − t�

�t�� − t��	 − t�
dt

−�
�

0 sinh−1�− t

��− t��� − t��	 − t�
dt� �22�

while Eq. �8b� for the Y coordinate remains unaltered.
Since the W plane mapping for a rectangular channel is iden-

tical to a trapezoidal channel, the expressions for qs �Eq. �10�� and
Fs �Eq. �11�� remain unaltered, however, � and 	 have values
different than a trapezoidal channel. These transformation param-
eters can be obtained from the simultaneous solution of

d

y
= �K���� − 	�/������

	

� tan−1�t/�1 − t�
�t�� − t��t − 	�

dt �23a�

b

y
=�

�

1
�/2 − tan−1�t/�1 − t�

�t�t − ���t − 	�
dt��

	

� tan−1�t/�1 − t�
�t�� − t��t − 	�

dt

�23b�

Hence Eq. �13� changes to

Fs = 2�K��	/������
	

� tan−1�t/�1 − t�
�t�� − t��t − 	�

dt �24�

For the drainage layer at large depth Eqs. �23b� and �24� trans-
form to

b

y
=�

�

1
�/2 − tan−1�t/�1 − t�

t�t − �
dt��

0

� tan−1�t/�1 − t�

t�� − t
dt

�25�

Fs = �2����
0

� tan−1�t/�1 − t�

t�� − t
dt �26�

The seepage velocity distribution for the drainage layer at
shallow as well as large depth cases along the bed of the rectan-
gular channel �����1� is

V

k
=

�

� − 2 tan−1��/�1 − ��
�27�

and along the sides of the channel b�a��1��� � � is

V

k
=

�

2 tanh−1��� − 1�/�
�28�

At the water surface �=�, so the velocity of the seeping water is
zero.

Triangular Channel

A trapezoidal channel with zero bed width �b=0� is a triangular
channel. In the different mapping planes �Figs. 1�b–e�� the point
b� coincides with the point c� and hence the transformation vari-
able � vanishes after attaining a value equal to unity. Through
�=1, various relations for a trapezoidal channel can be deduced
for a triangular channel, for example, Eq. �13� for the seepage

function reduces to
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Fs = 4K��	�B�1/2,����
	

1 Bt�1/2,��dt

�t�1 − t��t − 	�
�29�

and Eq. �12a� for the transformation parameter 	 reduces to

d

y
= 2K��1 − 	�B�1/2,����

	

1 Bt�1/2,��dt

�t�1 − t��t − 	�
�30�

For a large depth of drainage layer Eq. �29� becomes

Fs = 2�B�1/2,����
0

1 Bt�1/2,��dt

t��1 − t�
�31�

The seepage velocity distribution is identical to the variation in
the seepage velocity along the sides in the trapezoidal channel.

Slit

A very narrow and deep polygon channel can be assumed as a slit.
For a slit, the width at water surface �T� approaches zero, i.e.,
T /y→0. This means m→0 �or �→0.5� for a triangular section;
b /y→0 �or �→1� for a rectangular channel; and both m→0 and
b /y→0 for a trapezoidal channel. Thus Eq. �24� with �=1 or Eq.
�29� with �=0.5 results in the seepage function for a slit as

Fs = 2�K��	���
	

1 tan−1�t/�1 − t�
�t�1 − t��t − 	�

dt �32�

For infinite depth of the drainage layer, Eq. �32� with 	=0, Eq.
�26� with �=1, or Eq. �31� with �=0.5 yields

Fs = �2��
0

1 tan−1�t/�1 − t�

t�1 − t
dt =

�2

4G
� ��4 − �� �33�

where G=0.915965594. . .�Catalan’s constant. The outcome is
identical to Chahar’s �2000, 2001� solution.

Example

As an example, we can compute the quantity of seepage/recharge
from a trapezoidal channel having a bed width�3.0 m, a depth of
flow�2 m, and side slopes�1 vertical: 1.5 horizontal, passing
through a porous medium having hydraulic conductivity=3

10−6 m/s and underlain by a highly pervious drainage layer at a
depth of 4.0 m.

For the given data b /y=1.5 and d /y=2.0. Eqs. �12a� and �12b�
should be solved simultaneously to get � and 	. However, since
these equations are highly nonlinear and contain improper inte-
grals, an indirect method has been used to find � and 	. The
method consists of minimization of an objective function by Pow-
ell’s conjugate search method �Press et al. 1992�. The objective
function is defined as

f��,	� = �d

y
− f1��,�,	��2

+ �b

y
− f2��,�,	��2

�34�

where f1�� ,� ,	� and f2�� ,� ,	� are right-hand sides of Eqs.
�12a� and �12b�, respectively. The minimum of this function is
zero, which can be attained only when both of the parts of the
function reach zero values and hence satisfy Eqs. �12a� and �12b�.
After removing singularities �Chahar 2005� and using Gaussian
quadratures �96 points for weights and abscissa for both inner and

outer integrals� for numerical integration �Abramowitz and Ste-



gun 1972�, the function was minimized for � and 	 for given set
of �, b /y, and d /y to get

� = 0.9353, 	 = 0.9145

Making use of these values in Eqs. �5� and �13�

B = 11.088 m, Fs = 8.3610

and finally from Eq. �1�

qs = 5.0166 
 10−5 m3/s per meter run of the channel

Adopting a similar procedure for Muskat’s approximate solu-
tion �Eqs. �61a�–�61c��, the corresponding values are �=0.9854;
	=0.96867; Fs=8.0185, and qs=4.8111
10−5 m3/s /m, there-
fore it underestimates the seepage loss by 4.10%.

If the depth of the drainage layer is increased to 10.0 m �i.e.,
d /y=5�, �=0.7217 and 	=0.1146 and hence, B=12.940 m,
Fs=6.9384, and qs=4.16304
10−5 m3/s /m. It can be seen that
the seepage loss is reduced by 17.01%. The comparisons between
the two cases for phreatic surfaces and seepage velocity distribu-
tions along the channel perimeter are shown in Fig. 2.

Discussions

Following the procedure as outlined in the above-presented ex-
ample the seepage function was calculated for various values of
d /y and b /y for a fixed value of � �i.e., m=1.5�. The resultant
values were plotted in Fig. 3. Similar graphs can be prepared for
other values of m. Fig. 3 shows that the quantity of seepage is
very sensitive to the presence of a drainage layer at a shallow
depth �i.e., d /y close to one� while the quantity of seepage varies
a little with change in position of the drainage layer at large depth
�i.e., d /y�5� for given b /y and m.

Eqs. �17� and �20� include � and � only, as if the variations in
the seepage velocities along the bed and the side slopes were
independent of b ,y, and d. Therefore, they result in identical val-

Fig. 2. Seepage velocity distribution and phreatic lines
ues of the seepage velocity for a same set of � and � regardless of
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b ,y, and d. However, the transformation parameters �� and 	� are
controlled by � ,b ,y, and d, so � maps at different locations along
the channel perimeter based on � ,b ,y, and d, resulting in change
in the seepage velocity with change in the channel dimensions or
depth of the drainage layer. To show this, plots similar to Bouwer
�1965� have been added in Fig. 2 for seepage velocity distribu-
tions for d /y=2 and d /y=5 for the worked example. The seepage
velocities are higher for lower values of d /y. However, the seep-
age velocity at the originating point of the phreatic line is inde-
pendent of d /y and b /y and a unique function of � given by
Eq. �21�.

The solution given by Eqs. �10�–�13� can be compared with
the existing Muskat’s �1982� approximate solution �see Eq. �61��.
Similarly the present solutions for the rectangular channel �Eqs.
�23�–�26�� and the triangular channel �Eqs. �29�–�31�� can also be
compared with the existing solutions given in Appendix II. It can
be seen that the present solution is consistent and convenient in
obtaining limiting or particular solutions for channels of rectan-
gular, triangular, and slit shapes both for drainage layer at shallow
and large depths. On the other hand, the existing solutions by
different investigators using different methods or different point
of openings in the mapping planes differ from each other as well
as cannot be deduced from each other. Further, the existing solu-
tions lack in expressions for the velocity distribution along the
channel perimeter.

Conclusions

An exact analytical solution for the quantity of seepage from a
trapezoidal channel underlain by a drainage layer at a shallow
depth can be obtained using an inverse hodograph and Schwarz-
Christoffel transformation for one half of the seepage domain.
From this general solution, other special cases like a trapezoidal
channel without a drainage layer, a rectangular channel underlain
by a drainage layer at a shallow depth, a triangular channel un-
derlain by a drainage layer at a shallow depth, a rectangular chan-
nel without a drainage layer, and a triangular channel without a
drainage layer can be deduced. The analysis can also include
solutions for the variation in the seepage velocity along the chan-
nel perimeter and the quantity of seepage from slit-like channels.
Therefore the solution is exact, complete, consistent, and general.

Fig. 3. Variation in seepage function with d /y and b /y
However, the solutions for the quantity of seepage, location of the
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phreatic line, and width of seepage at the drainage layer contain
improper integrals which can only be evaluated by numerical
integration.
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Appendix I. Mapping Details

Drainage Layer at Shallow Depth

Mapping of Inverse Hodograph Plane
Mapping of dZ /DW plane on the � plane results in

dZ

dW
= C1�

0

� dt

�t − 1�1−��t
+ C2 �35�

where C1 and C2�constants. These constants can be found by
using values of dZ /dW and � at two points in dZ /dW plane and
� plane. Using the values at point b� ��=1;dZ /dW=0� and at
the point h� ��=0;dZ /dW=−i /k� in Eq. �35� and solving
simultaneously

C1 =
i

k��
0

1 dt

�t − 1�1−��t
=

− iei��

kB�1/2,��
, C2 = −

i

k
�36�

where

�
0

1 dt

�t − 1�1−��t
=

1

�− 1�1−��
0

1

�1 − t��−1�t��1/2�−1dt =
B�1/2,��
�e−i��1−�

�37�

Substitution of C1 and C2 in Eq. �35� gives Eq. �2�.

Mapping of Complex Potential Plane
The W plane mapping on the � plane is

W = C3�
0

� dt
�t�t − 	��t − ��

+ C4 �38�

The constants C3 and C4 have been determined using the values at
points c���=� ;W=0� and g���=	 ;W=kd�. After substituting C3

and C4, Eq. �38� becomes

W = kd�
�

� dt
�t�t − 	��t − ����

�

	 dt
�t�t − 	��t − ��

�39�
We know that
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�
�

	 dt
�t�t − 	��t − ��

= − i�
	

� dt
�t�t − 	��� − t�

=

− i
2

��
K���� − 	�/�� �40�

Combining Eqs. �39� and �40� results in Eq. �3�. Differentiating
Eq. �3� with respect to � gives

dW

d�
= i

kd��

2K���� − 	�/��
1

���� − 	��� − ��
�41�

Mapping of Physical Plane
Since dZ /d�= �dZ /dW��dW /d��, substitution of dZ /dW from Eq.
�2� and dW /d� from Eq. �41� results in

dZ

d�
=

ei��

B�1/2,��
d��

2K���� − 	�/��


��
1

� dt

�t − 1�1−��t
� 1

���� − ���� − 	�
�42�

Integrating Eq. �42� and applying the condition at h���=0;
Z=B/2− id� gives Eq. �4�. Along the drainage layer h�g� �Fig.
1�a��, 0���	 and hence Eq. �4� at g���=	 ;Z=−id� becomes

B

2
=

1

B�1/2,��
d��

2K���� − 	�/��


�
0

	 ��
t

1 d�

�1 − ��1−���
� dt

�t�� − t��	 − t�
�43�

Let

F1�t,�� =�
t

1 d�

�1 − ��1−���

=�
0

1 d�

�1 − ��1−���
−�

0

t d�

�1 − ��1−���

= B�1/2,�� − Bt�1/2,�� �44�

where

Bt�1

2
,�� =�

0

t d�

�1 − ��1−���
= 2�t2F1�1

2
,1 − �;

3

2
;t� �45�

in which 2F1�Gauss-Hypergeometric series �Abramowitz and
Stegun 1972� given by

2F1�a,b;c;t� = 1 +
ab

c
t +

a�a + 1�b�b + 1�
c�c + 1��1��2�

t2

+
a�a + 1��a + 2�b�b + 1��b + 2�

c�c + 1��c + 2��1��2��3�
t3 + ¯ �46�

Therefore Eq. �43� can be rewritten as Eq. �5�. Along the center

line of channel g�c��	�����, Eq. �4� becomes



Z = − id +
i

B�1/2,��
d��

2K���� − 	�/��


�
	

� ��
t

1 d�

�1 − ��1−���
� dt

�t�� − t��t − 	�
�47�

so that at the center of the channel g� ��=� ;Z=−iy� this reduces
to Eq. �6�. Further, Eq. �4� along the bed of the channel
c�b� �����1� becomes

Z = − iy +
1

B�1/2,��
d��

2K���� − 	�/��


�
�

� ��
t

1 d�

�1 − ��1−���
� dt

�t�t − ���t − 	�
�48�

at the corner of channel b� ��=1;Z=b /2− iy� Eq. �48� yields Eq.
�7�. Finally Eq. �4� along the side slope of the channel
b�a��1��� � � is

Z =
b

2
− iy +

ei��

B�1/2,��
d��

2K���� − 	�/��


�
1

� ��
1

t d�

�� − 1�1−���
� dt

�t�t − ���t − 	�
�49�

Therefore at water surface a� ��= � ;Z=b /2+y cot ���, it gives

y =
d�� sin ��

2K���� − 	�/��B�1/2,��
�

1

� F2�t,��dt

�t�t − ���t − 	�
�50�

in which

F2�t,�� =�
1

t d�

�� − 1�1−���
�51�

Eqs. �50� and �6� must give identical results for y, therefore

�
	

� Bt�1/2,��dt

�t�� − t��t − 	�
= sin ���

1

� F2�t,��dt

�t�t − ���t − 	�
�52�

Position of Phreatic Line
The phreatic line a�h��−� �0� can be located by manipulat-
ing Eq. �4� as

Z =
B

2
− id +

id��

2K���� − 	�/��
�

0

� �1 +
i

B�1/2,��


�
0

t d�

�1 − ��1−��− �
� dt

��− t��� − t��	 − t�
�53�

Letting

�
0

t d�

�1 − ��1−��− �
= F3�t,�� �54�

and separating the real and imaginary parts leads to Eqs. �21� and
�22�, where

�
�

0 dt
��− t��� − t��	 − t�

=
2

��
F�sin−1��/�� − 	�,��� − 	�/��
�55�

JO
Rectangular Channel
For a rectangular channel m=0, so �=0.5 �See Fig. 4�a�� and
hence the mappings in the hodograph and inverse hodograph
planes are modified as shown in Figs. 4�b and c�, respectively
�except that the points g� and h� map to separate locations, similar
to the trapezoidal case�. However, the mapping in the complex
potential plane remains unaltered, i.e., similar to Fig. 1�d�. With
�=0.5

B�1

2
,�� =�

0

1 dt

�1 − t�1−��t
=�

0

1 dt
�t�1 − t�

= � �56a�

F1��,t� =�
t

1 dt

�1 − ��1−���
=�

t

1 dt
���1 − ��

= � − 2 tan−1�t/�1 − t�

�56b�

F2��,t� =�
1

t dt

�� − 1�1−���
=�

1

t dt
���� − 1�

= 2 tanh−1��t − 1�/t

�56c�

and

F3��,t� =�
0

t dt

�1 − t�1−��− t
=�

0

t dt
�− t�1 − t�

= − 2 sinh−1�− t

�56d�

Fig. 4. Seepage from a rectangular channel with a drainage layer at
infinite depth
Therefore, the relevant equations transform to
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dZ

dW
=

i

k
�

1

� dt
�t�t − 1���

0

1 dt
�t�t − 1�

=
2 tanh−1��� − 1�/�

�k

�57a�

Z =
B

2
− id +

id��

�K���� − 	�/��
�

0

� tanh−1��t − 1�/t
�t�t − ���t − 	�

dt �57b�

B

2
=

d��

�K���� − 	�/��
�

0

	
�/2 − tan−1�t/�1 − t�

�t�� − t��	 − t�
dt �57c�

y =
d��

�K���� − 	�/��
�

	

� tan−1�t/�1 − t�
�t�� − t��t − 	�

dt

=
d��

�K���� − 	���
�

1

� tanh−1��t − 1�/t
�t�t − ���t − 	�

dt �57d�

and

b =
d��

�K���� − 	�/��
�

�

1
�/2 − tan−1�t/�1 − t�

�t�t − ���t − 	�
dt �57e�

Drainage Layer and Water Table at Infinite Depth

Trapezoidal Channel
When the drainage layer and water table both lie at infinite depth
in a homogeneous isotropic porous medium of infinite extent both
the points g� and h� approach each other in the hodograph and
inverse hodograph mapping planes �Figs. 1�b and c��. At infinite
depth the hydraulic gradient becomes unity and the seepage ve-
locity acquires a uniform magnitude equal to the hydraulic con-
ductivity over a horizontal plane. However, at infinite depth the
velocity potential becomes infinite, so the mapping in the W plane
converts to a semi-infinite strip as shown in Fig. 4�d�. With these
adjustments, the transformation variable 	 in Fig. 1�e� vanishes
from the transformation after attaining a value equal to zero and
the changed relations turn into

W =
iqs

��

2�
�

�

� dt

t��t − ��
�58a�

Z = − iy +
qs

��

2�

ei��

kB�1/2,����

� ��
1

t d�

�� − 1�1−���
� dt

t�t − �

�58b�

b =
qs

��

�kB�1/2,����

1 F1�t,��dt

t�t − �
�58c�

y =
qs

��

2�

sin ��

kB�1/2,���1

� F2�t,��dt

t�t − �
=

qs
��

2�kB�1/2,���0

� Bt�t,��dt

t�� − t
�58d�
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X =
b

2
+ y cot ��

+ y�
−�

� �F3�t,�� − B�1/2,��cot ���dt

− t�� − t ��
1

� F2�t,��dt

t�t − �

�58e�

Y = y�
−�

� �cot ��F3�t,�� − B�1/2,���dt

− t�� − t ��
1

� F2�t,��dt

t�t − �

�58f�

and width of seepage flow at infinity

B = b + 2y cot ��

+ 2y�
−�

0 �F3�t,�� − B�1/2,��cot ���dt

− t�� − t ��
1

� F2�t,��dt

t�t − �
.

�58g�

Comparing Eq. �1� with Eq. �58d� gives Eq. �14�

Rectangular Channel
Fig. 4 shows mappings in different planes for a rectangular chan-
nel passing through a homogeneous, isotropic porous medium of
infinite extent, i.e., both the drainage layer and water table lie at
an infinite depth. The inverse hodograph mapping relations are
similar to a rectangular channel having drainage layer at finite
depth. On the other hand, the complex potential plane mapping
becomes similar to a trapezoidal channel with the drainage layer
and water table lying at an infinite depth given by Eq. �58a�. With
	=0 and �=0.5, the other relations alter as follows:

Z = − iy +
iqs

��

�2k
�

�

� tanh−1��t − 1�/t

t�t − �
dt �59a�

b =
qs

��

�2k
�

�

1
�/2 − tan−1�t/�1 − t�

t�t − �
dt �59b�

y =
qs

��

�2k
�

1

� tanh−1��t − 1�/t

t�t − �
dt =

qs
��

�2k
�

0

� tan−1�t/�1 − t�

t�� − t
dt

�59c�

X =
b

2
+

qs
��

�2k
�

−�

� sinh−1�− t

− t�� − t
dt �59d�

Y = −
qs

��

2�k
�

−�

� dt

− t�� − t
=

qs

2�k
ln��� − � − ��

�� − � + ��
� �59e�

and

B

2
=

b

2
+

qs
��

�2k
�

−�

0 sinh−1�− t

− t�� − t
dt �59f�

For �=1, the integrals in Eq. �59c� have the following special
value:

�� tanh−1��t − 1�/t

t��t − 1�
dt =�1 tan−1�t/�1 − t�

t��1 − t�
dt = 4G �60�
1 0



Appendix II. Comparison with existing solutions

Drainage Layer at Shallow Depth

Using the Zhukovsky function and conformal mapping, Muskat
�1982� gave the following approximate solution for the seepage
function for a trapezoidal channel

Fs =
2mK���

K��� − F��,sin−1	�
�61a�

where the transformation variables � and 	 are given by the si-
multaneous solution of the following:

d

y
=

mK��1 − �2�
K��� − F��,sin−1 	�

�61b�

b

y
=

2mF��,sin−1 	�
K��� − F��,sin−1 	�

−
2K�	�

K��1 − 	2�
�61c�

Chahar �2000� and Swamee et al. �2001� obtained an exact
analytical solution for a rectangular channel using an inverse
hodograph and Schwarz Christoffel transformations but mapping
the vertices of the polygons in the dZ /dW and W planes onto the
auxiliary plane at different locations. The solution was

Fs =
2�

��
K���� − 1�/����

0

1 tan−1��� − ��/�	 + ��
���1 − ���� − ��

d� .

�62a�

where � and 	 were given by simultaneous solution of

d

y
=

�

��
K�1/�����

0

1 tan−1��� − ��/�	 + ��
���1 − ���� − ��

d� �62b�

b

y
= 2	 �

��
F��� − 1

�
,sin−1� 	

1 + 	
�

−�
0

	 tan−1�� + �

	 − �
d�

���1 + ���� + ��
��
0

1 tan−1�� − �

	 + �
d�

���1 − ���� − ��
�62c�

In the present solution 0�	���1; while in Chahar’s �2000�
solution 0�	�� and 1����.

Using an inverse hodograph and conformal mapping, Bruch
and Street �1967a, b� gave the following expression for the seep-
age function for a triangular channel, but with a different auxil-
iary plane mapping

Fs = 2
d

y

K�1/�	�

K���	 − 1�/	�
�63a�
where the transformation variable 	 was given by

JO
1 −
d

y
= Im	�m + i�

�
0

−	 ��
0

t
d�

�1−��1 + ��0.5+��� + 	
� dt

�t�1 + t��t + 	�

�
0

−1 ��
0

t
d�

�1−��1 + ��0.5+��� + 	
� dt

�t�1 + t��t + 	�



�63b�
where Im�imaginary part. In the present solution 0�	�1;
while in Bruch’s solution 1�	��.

Drainage Layer and Water Table at Infinite Depth

Vedernikov �Harr 1962� gave an exact solution to the present case
using an inversion of the hodograph and conformal mapping tech-
nique as

Fs = �m�
�

1
tdt

�1 − t2��0.5+���t2 − �2��1−����
�

1
t cos−1tdt

�1 − t2��0.5+���t2 − �2��1−��

�64a�
where ��transformation variable was given by

b

y
= 2�

0

�
t sin−1 tdt

�1 − t2��0.5+����2 − t2��1−��� sin ���
�

1
t cos−1 tdt

�1 − t2��0.5+���t2 − �2��1−��

�64b�
Vedernikov obtained his solution using a full seepage domain
while the present solution utilized the advantage of the symmetry
of the seepage flow in the vertical plane and hence only half of
the seepage domain is used in the solution.

Using conformal mapping and Green-Neumann functions,
Morel-Seytoux �1964� gave the solution for a rectangular channel
as follows:

Fs = �2� 2�
�

�

ln���1 + t2 + �t2 − �2�/�1 + �2
dt

1 + t2

�65a�

where transformation variable � was given by

b

y
=�

0

�

cos−1�2t2 + 1 − �2

1 + �2 � dt

1 + t2��
�

�

ln���1 + t2

+ �t2 − �2�/�1 + �2
dt

1 + t2 �65b�

The existing Vedernikov’s solution �Harr 1962� for a triangular
channel is

Fs = �m�
0

1

�1 − t2�−�0.5+��t−�1−2��dt��
0

1

cos−1 t�1 − t2�−�0.5+��t−�1−2��dt

�66�

Notation

The following symbols are used in this paper:
a� ,b� ,c� , . . . � points on flow domain �dimensionless�;

B � seepage width at drainage layer �m�;
B�. , . � � complete beta function �dimensionless�;
Bt�. , . � � incomplete beta function �dimensionless�;

b � bed width of channel �m�;

d � depth of drainage layer/aquifer �m�;
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Fs � seepage function �dimensionless�;
F�. , . � � incomplete elliptical integral of the first kind

�dimensionless�;
F1�t ,�� � integral defined by Eq. �44� �dimensionless�;
F2�t ,�� � integral defined by Eq. �51� �dimensionless�;
F3�t ,�� � integral defined by Eq. �54� �dimensionless�;

2F1 � Gauss-hypergeometric series �dimensionless�;
G � Catalan constant �dimensionless�;
i � imaginary number �dimensionless�;

K�.� � complete elliptical integral of the first kind
�dimensionless�;

k � hydraulic conductivity �m/s�;
m � side slope of channel �1 vertical: m horizontal�

�dimensionless�;
qs � seepage discharge per unit length of channel

�m2/s�;
T � width of channel at water surface �m�;
u � velocity of seeping water along X axis �m/s�;
V � resultant velocity of seeping water �m/s�;
v � velocity of seeping water along Y axis �m/s�;

W � �+ i� complex potential �m2/s�;
X � real axis of the complex plane �m�;
Y � imaginary axis of the complex plane �m�;
y � water depth in channel �m�;
Z � X+ iY complex plane variable �m�;

� ,	 � transformation variables �dimensionless�;
� � gamma function �dimensionless�;
� � complex variable in auxiliary plane

�dimensionless�;
� � �1/��cot−1m� �dimensionless�;

� , t � dummy variables �dimensionless�;
� � velocity potential �m2/s�; and
� � stream function �m2/s�.
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